
3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 1/19

Algorithmic trading in less than 100 lines
of Python code
If you're familiar with financial trading and know Python, you can get
started with basic algorithmic trading in no time.
By Yves Hilpisch, January 18, 2017

Business (source: Pixabay).

 FOLLOW THIS TOPICSOFTWARE ENGINEERING

ON OUR RADAR AI BUSINESS DATA DESIGN ECONOMY OPERATIONS SECURITY SOFTWARE ARCHITECTURESEE ALL

https://www.oreilly.com/people/9957e103-5537-456b-a19d-ae2351af9620
https://pixabay.com/en/business-stock-finance-market-1730089/
https://www.oreilly.com/topics/software-engineering
https://www.oreilly.com/topics/ai
https://www.oreilly.com/topics/business
https://www.oreilly.com/topics/data
https://www.oreilly.com/topics/design
https://www.oreilly.com/topics/economy
https://www.oreilly.com/topics/operations
https://www.oreilly.com/topics/security
https://www.oreilly.com/topics/software-architecture
https://www.oreilly.com/topics
https://www.oreilly.com/

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 2/19

If you'd like to learn more about analyzing financial data with
Python, check out Python for Finance by Yves Hilpisch.

Algorithmic Trading

Algorithmic trading refers to the computerized, automated
trading of financial instruments (based on some algorithm or
rule) with little or no human intervention during trading hours.
Almost any kind of financial instrument — be it stocks,
currencies, commodities, credit products or volatility — can be
traded in such a fashion. Not only that, in certain market
segments, algorithms are responsible for the lion’s share of the
trading volume. The books The Quants by Scott Patterson and
More Money Than God by Sebastian Mallaby paint a vivid
picture of the beginnings of algorithmic trading and the
personalities behind its rise.

The barriers to entry for algorithmic trading have never been
lower. Not too long ago, only institutional investors with IT
budgets in the millions of dollars could take part, but today
even individuals equipped only with a notebook and an Internet
connection can get started within minutes. A few major trends
are behind this development:

https://www.safaribooksonline.com/library/view/python-for-finance/9781491945360/?utm_source=newsite&utm_medium=content&utm_campaign=lgen&utm_content=algorithmic+trading+100+lines+python
http://a.co/b9GO4b7
http://a.co/2N9nOGb

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 3/19

Open source software: Every piece of software that a trader
needs to get started in algorithmic trading is available in the
form of open source; specifically, Python has become the
language and ecosystem of choice.

Open data sources: More and more valuable data sets are
available from open and free sources, providing a wealth of
options to test trading hypotheses and strategies.

Online trading platforms: There is a large number of online
trading platforms that provide easy, standardized access to
historical data (via RESTful APIs) and real-time data (via
socket streaming APIs), and also offer trading and portfolio
features (via programmatic APIs).

This article shows you how to implement a complete algorithmic
trading project, from backtesting the strategy to performing
automated, real-time trading. Here are the major elements of
the project:

Strategy: I chose a time series momentum strategy (cf.
Moskowitz, Tobias, Yao Hua Ooi, and Lasse Heje Pedersen
(2012): "Time Series Momentum." Journal of Financial
Economics, Vol. 104, 228�250.), which basically assumes that

http://www.investopedia.com/terms/b/backtesting.asp

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 4/19

a financial instrument that has performed well/badly will
continue to do so.

Platform: I chose Oanda; it allows you to trade a variety of
leveraged contracts for differences (CFDs), which essentially
allow for directional bets on a diverse set of financial
instruments (e.g. currencies, stock indices, commodities).

Data: We’ll get all our historical data and streaming data from
Oanda.

Software: We’ll use Python in combination with the powerful
data analysis library pandas, plus a few additional Python
packages.

The following assumes that you have a Python 3.5 installation
available with the major data analytics libraries, like NumPy and
pandas, included. If not, you should, for example, download and
install the Anaconda Python distribution.

Oanda Account

At http://oanda.com, anyone can register for a free demo
("paper trading") account within minutes. Once you have done

http://oanda.com/
http://www.investopedia.com/terms/c/contractfordifferences.asp
http://pandas.pydata.org/
http://continuum.io/downloads
http://oanda.com/

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 5/19

that, to access the Oanda API programmatically, you need to
install the relevant Python package:

pip install oandapy

To work with the package, you need to create a configuration
file with filename oanda.cfg that has the following content:

[oanda]
account_id = YOUR_ACCOUNT_ID
access_token = YOU_ACCESS_TOKEN

Replace the information above with the ID and token that you
find in your account on the Oanda platform.

In [1]:
import configparser # 1
import oandapy as opy # 2

config = configparser.ConfigParser() # 3
config.read('oanda.cfg') # 4

oanda = opy.API(environment='practice',

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 6/19

 access_token=config['oanda']
['access_token']) # 5

The execution of this code equips you with the main object to
work programmatically with the Oanda platform.

Backtesting

We have already set up everything needed to get started with
the backtesting of the momentum strategy. In particular, we are
able to retrieve historical data from Oanda. The instrument we
use is EUR_USD and is based on the EUR/USD exchange rate.

The first step in backtesting is to retrieve the data and to
convert it to a pandas DataFrame object. The data set itself is
for the two days December 8 and 9, 2016, and has a granularity
of one minute. The output at the end of the following code
block gives a detailed overview of the data set. It is used to
implement the backtesting of the trading strategy.

In [2]:
import pandas as pd # 6

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 7/19

data = oanda.get_history(instrument='EUR_USD', # our
instrument
 start='2016-12-08', # start
data
 end='2016-12-10', # end date
 granularity='M1') # minute bars
7

df = pd.DataFrame(data['candles']).set_index('time') # 8

df.index = pd.DatetimeIndex(df.index) # 9

df.info() # 10

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2658 entries, 2016-12-08 00:00:00 to 2016-
12-09 21:59:00
Data columns (total 10 columns):
closeAsk 2658 non-null float64
closeBid 2658 non-null float64
complete 2658 non-null bool
highAsk 2658 non-null float64
highBid 2658 non-null float64
lowAsk 2658 non-null float64
lowBid 2658 non-null float64
openAsk 2658 non-null float64
openBid 2658 non-null float64
volume 2658 non-null int64

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 8/19

dtypes: bool(1), float64(8), int64(1)
memory usage: 210.3 KB

Second, we formalize the momentum strategy by telling Python
to take the mean log return over the last 15, 30, 60, and 120
minute bars to derive the position in the instrument. For
example, the mean log return for the last 15 minute bars gives
the average value of the last 15 return observations. If this value
is positive, we go/stay long the traded instrument; if it is
negative we go/stay short. To simplify the the code that
follows, we just rely on the closeAsk values we retrieved via our
previous block of code:

In [3]:
import numpy as np # 11

df['returns'] = np.log(df['closeAsk'] /
df['closeAsk'].shift(1)) # 12

cols = [] # 13

for momentum in [15, 30, 60, 120]: # 14
 col = 'position_%s' % momentum # 15
 df[col] =

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 9/19

np.sign(df['returns'].rolling(momentum).mean()) # 16
 cols.append(col) # 17

Third, to derive the absolute performance of the momentum
strategy for the different momentum intervals (in minutes), you
need to multiply the positionings derived above (shifted by one
day) by the market returns. Here’s how to do that:

In [4]:
%matplotlib inline
import seaborn as sns; sns.set() # 18

strats = ['returns'] # 19

for col in cols: # 20
 strat = 'strategy_%s' % col.split('_')[1] # 21
 df[strat] = df[col].shift(1) * df['returns'] # 22
 strats.append(strat) # 23

df[strats].dropna().cumsum().apply(np.exp).plot() # 24

Out[4]:
<matplotlib.axes._subplots.AxesSubplot at 0x11a9c6a20>

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 10/19

Inspection of the plot above reveals that, over the period of the
data set, the traded instrument itself has a negative
performance of about -2%. Among the momentum strategies,
the one based on 120 minutes performs best with a positive
return of about 1.5% (ignoring the bid/ask spread). In principle,
this strategy shows "real alpha": it generates a positive return
even when the instrument itself shows a negative one.

Automated Trading

Once you have decided on which trading strategy to implement,
you are ready to automate the trading operation. To speed up
things, I am implementing the automated trading based on
twelve five-second bars for the time series momentum strategy
instead of one-minute bars as used for backtesting. A single,
rather concise class does the trick:

In [5]:
class MomentumTrader(opy.Streamer): # 25
 def __init__(self, momentum, *args, **kwargs): # 26
 opy.Streamer.__init__(self, *args, **kwargs) #
27

http://www.investopedia.com/terms/b/bid-askspread.asp
http://www.investopedia.com/terms/a/alpha.asp

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 11/19

 self.ticks = 0 # 28
 self.position = 0 # 29
 self.df = pd.DataFrame() # 30
 self.momentum = momentum # 31
 self.units = 100000 # 32
 def create_order(self, side, units): # 33
 order = oanda.create_order(config['oanda']
['account_id'],
 instrument='EUR_USD', units=units, side=side,
 type='market') # 34
 print('\n', order) # 35
 def on_success(self, data): # 36
 self.ticks += 1 # 37
 # print(self.ticks, end=', ')
 # appends the new tick data to the DataFrame
object
 self.df =
self.df.append(pd.DataFrame(data['tick'],
 index=[data['tick']
['time']])) # 38
 # transforms the time information to a
DatetimeIndex object
 self.df.index = pd.DatetimeIndex(self.df['time'])
39
 # resamples the data set to a new, homogeneous
interval
 dfr = self.df.resample('5s').last() # 40
 # calculates the log returns
 dfr['returns'] = np.log(dfr['ask'] /
dfr['ask'].shift(1)) # 41

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 12/19

 # derives the positioning according to the
momentum strategy
 dfr['position'] = np.sign(dfr['returns'].rolling(

self.momentum).mean()) # 42
 if dfr['position'].ix[-1] == 1: # 43
 # go long
 if self.position == 0: # 44
 self.create_order('buy', self.units) #
45
 elif self.position == -1: # 46
 self.create_order('buy', self.units * 2)
47
 self.position = 1 # 48
 elif dfr['position'].ix[-1] == -1: # 49
 # go short
 if self.position == 0: # 50
 self.create_order('sell', self.units) #
51
 elif self.position == 1: # 52
 self.create_order('sell', self.units * 2)
53
 self.position = -1 # 54
 if self.ticks == 250: # 55
 # close out the position
 if self.position == 1: # 56
 self.create_order('sell', self.units) #
57
 elif self.position == -1: # 58
 self.create_order('buy', self.units) #

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 13/19

The code below lets the MomentumTrader class do its work. The
automated trading takes place on the momentum calculated
over 12 intervals of length five seconds. The class automatically
stops trading after 250 ticks of data received. This is arbitrary
but allows for a quick demonstration of the MomentumTrader
class.

In [6]:
mt = MomentumTrader(momentum=12, environment='practice',
 access_token=config['oanda']
['access_token'])
mt.rates(account_id=config['oanda']['account_id'],
 instruments=['DE30_EUR'], ignore_heartbeat=True)

{'price': 1.04858, 'time': '2016-12-15T10:29:31.000000Z',
'tradeReduced': {}, 'tradesClosed': [], 'tradeOpened':
{'takeProfit': 0, 'id': 10564874832, 'trailingStop': 0,
'side': 'buy', 'stopLoss': 0, 'units': 100000},
'instrument': 'EUR_USD'}

59
 self.disconnect() # 60

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 14/19

 {'price': 1.04805, 'time': '2016-12-
15T10:29:46.000000Z', 'tradeReduced': {}, 'tradesClosed':
[{'side': 'buy', 'id': 10564874832, 'units': 100000}],
'tradeOpened': {'takeProfit': 0, 'id': 10564875194,
'trailingStop': 0, 'side': 'sell', 'stopLoss': 0,
'units': 100000}, 'instrument': 'EUR_USD'}

 {'price': 1.04827, 'time': '2016-12-
15T10:29:46.000000Z', 'tradeReduced': {}, 'tradesClosed':
[{'side': 'sell', 'id': 10564875194, 'units': 100000}],
'tradeOpened': {'takeProfit': 0, 'id': 10564875229,
'trailingStop': 0, 'side': 'buy', 'stopLoss': 0, 'units':
100000}, 'instrument': 'EUR_USD'}

 {'price': 1.04806, 'time': '2016-12-
15T10:30:08.000000Z', 'tradeReduced': {}, 'tradesClosed':
[{'side': 'buy', 'id': 10564875229, 'units': 100000}],
'tradeOpened': {'takeProfit': 0, 'id': 10564876308,
'trailingStop': 0, 'side': 'sell', 'stopLoss': 0,
'units': 100000}, 'instrument': 'EUR_USD'}

 {'price': 1.04823, 'time': '2016-12-
15T10:30:10.000000Z', 'tradeReduced': {}, 'tradesClosed':
[{'side': 'sell', 'id': 10564876308, 'units': 100000}],

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 15/19

'tradeOpened': {'takeProfit': 0, 'id': 10564876466,
'trailingStop': 0, 'side': 'buy', 'stopLoss': 0, 'units':
100000}, 'instrument': 'EUR_USD'}

 {'price': 1.04809, 'time': '2016-12-
15T10:32:27.000000Z', 'tradeReduced': {}, 'tradesClosed':
[{'side': 'buy', 'id': 10564876466, 'units': 100000}],
'tradeOpened': {}, 'instrument': 'EUR_USD'}

The output above shows the single trades as executed by the
MomentumTrader class during a demonstration run. The
screenshot below shows the fxTradePractice desktop
application of Oanda where a trade from the execution of the
MomentumTrader class in EUR_USD is active.

All example outputs shown in this article are based on a demo
account (where only paper money is used instead of real money)
to simulate algorithmic trading. To move to a live trading
operation with real money, you simply need to set up a real
account with Oanda, provide real funds, and adjust the

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 16/19

environment and account parameters used in the code. The
code itself does not need to be changed.

Conclusions

This article shows that you can start a basic algorithmic trading
operation with fewer than 100 lines of Python code. In
principle, all the steps of such a project are illustrated, like
retrieving data for backtesting purposes, backtesting a
momentum strategy, and automating the trading based on a
momentum strategy specification. The code presented provides
a starting point to explore many different directions: using
alternative algorithmic trading strategies, trading alternative
instruments, trading multiple instruments at once, etc.

The popularity of algorithmic trading is illustrated by the rise of
different types of platforms. For example, Quantopian — a web-
based and Python-powered backtesting platform for
algorithmic trading strategies — reported at the end of 2016
that it had attracted a user base of more than 100,000 people.
Online trading platforms like Oanda or those for
cryptocurrencies such as Gemini allow you to get started in real

http://quantopian.com/
http://gemini.com/

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 17/19

markets within minutes, and cater to thousands of active traders
around the globe.

Article image: Business (source: Pixabay).

Yves Hilpisch
Dr. Yves J. Hilpisch is founder and managing partner of The Python Quants (http://tpq.io), a group that
focuses on the use of open source technologies for financial data science, algorithmic trading and
computational finance. He is the author of the books Python for Finance (O'Reilly, 2014), Derivatives
Analytics with Python (Wiley, 2015) and Listed Volatility and Variance Derivatives (Wiley, 2017). Yves
lectures on computational finance at the CQF Program (http://cqf.com), on data science at htw saar
University of Applied Sciences (http://htws...

 SOFTWARE ENGINEERING SOFTWARE ENGINEERING

https://pixabay.com/en/business-stock-finance-market-1730089/
https://www.oreilly.com/people/9957e103-5537-456b-a19d-ae2351af9620
https://www.oreilly.com/learning/how-can-i-pass-parameters-to-a-command-in-c
https://www.oreilly.com/learning/how-do-i-use-the-singleton-pattern-in-c
https://www.oreilly.com/topics/software-engineering
https://www.oreilly.com/topics/software-engineering

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 18/19

How can I pass parameters to a command in
C#?
By Jeremy McPeak

Learn how to pass data to a command without violating the
command pattern in C#.

How do I use the singleton pattern in C#?
By Jeremy McPeak

Learn how to create thread-safe instances with the singleton
pattern in C#.

How should I format Transact-SQL queries?
By Mark Long

Learn the formatting possibilities for Transact-SQL queries and
develop your own code structure.

How do I locate data in my SQL Server
tables using SQL Server Management
Studio diagrams?
By Mark Long

Locate data quickly and easily with the SQL Server
Management Studio diagram tool.

ABOUT US SITE MAP

SOFTWARE ENGINEERING SOFTWARE ENGINEERING

https://www.oreilly.com/learning/how-can-i-pass-parameters-to-a-command-in-c
https://www.oreilly.com/people/jeremy-mcpeak
https://www.oreilly.com/learning/how-do-i-use-the-singleton-pattern-in-c
https://www.oreilly.com/people/jeremy-mcpeak
https://www.oreilly.com/learning/how-should-i-format-transact-sql-queries
https://www.oreilly.com/people/mark-long
https://www.oreilly.com/learning/how-should-i-format-transact-sql-queries
https://www.oreilly.com/learning/how-do-i-locate-data-in-my-sql-server-tables-using-sql-server-management-studio-diagrams
https://www.oreilly.com/people/mark-long
https://www.oreilly.com/learning/how-do-i-locate-data-in-my-sql-server-tables-using-sql-server-management-studio-diagrams
https://www.oreilly.com/topics/software-engineering
https://www.oreilly.com/topics/software-engineering

3/4/2017 Algorithmic trading in less than 100 lines of Python code - O'Reilly Media

https://www.oreilly.com/learning/algorithmic-trading-in-less-than-100-lines-of-python-code 19/19

Our Company

Work with Us

Customer Service

Contact Us

Ideas

Learning

Topics

All

© 2017 O'Reilly Media, Inc. All trademarks and registered trademarks appearing on oreilly.com are the property of their respective owners.

Terms of Service • Privacy Policy • Editorial Independence

http://oreilly.com/about/
http://oreilly.com/work-with-us.html
http://shop.oreilly.com/category/customer-service.do
http://shop.oreilly.com/category/customer-service.do
https://www.oreilly.com/ideas
https://www.oreilly.com/learning
https://www.oreilly.com/topics
https://www.oreilly.com/all
http://fb.co/OReilly
http://twitter.com/oreillymedia
https://www.youtube.com/user/OreillyMedia
https://plus.google.com/+oreillymedia
https://www.linkedin.com/company/o%27reilly-media
https://www.oreilly.com/
http://oreilly.com/terms/
http://oreilly.com/privacy.html
http://www.oreilly.com/about/editorial_independence.html

